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SUMMARY

During vertebrate cell division, chromosomes oscil-
late with periods of smooth motion interrupted by
abrupt reversals in direction. These oscillations
must be spatially constrained in order to align and
segregate chromosomes with high fidelity, but the
molecular mechanism for this activity is uncertain.
We report here that the human kinesin-8 Kif18A has
a primary role in the control of chromosome oscilla-
tions. Kif18A accumulates as a gradient on kineto-
chore microtubules in a manner dependent on its
motor activity. Quantitative analyses of kinetochore
movements reveal that Kif18A reduces the amplitude
of preanaphase oscillations and slows poleward
movement during anaphase. Thus, the microtubule-
depolymerizing kinesin Kif18A has the unexpected
function of suppressing chromosome movements.
Based on these findings, we propose a molecular
model in which Kif18A regulates kinetochore micro-
tubule dynamics to control mitotic chromosome
positioning.

INTRODUCTION

During mitosis, chromosomes establish connections to mitotic

spindle microtubules (MTs) via specialized protein complexes

called kinetochores, and subsequently translocate to the mid-

zone of the bipolar spindle. This process, known as ‘‘congres-

sion,’’ is essential for preserving the fidelity of the genome as it

ensures that sister chromosomes will be segregated on either

side of the cytokinetic furrow when it bisects the spindle

midzone. Despite decades of study on this important process,

the molecular mechanisms that allow chromosomes to find

and remain at the spindle equator remain unclear.

Classic live imaging studies of congressing chromosomes es-

tablished that bioriented chromosomes move at constant veloc-

ity and display abrupt changes in direction both before and after

alignment (Rieder and Salmon, 1994; Skibbens et al., 1993).

These oscillatory movements are surprisingly similar in un-

aligned and aligned chromosomes, with the exception that un-

aligned chromosomes tend to exhibit more directional persis-

tence toward the center of the spindle between reversals

(Skibbens et al., 1993). Current models for congression attempt

to explain the decrease in directional persistence near the meta-
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phase plate as a result of the combined influence of kinetochore-

microtubule (kMT) dynamic instability and away-from-pole

forces generated along chromosome arms by MTs and chromo-

kinesins (i.e., polar ejection forces) (Joglekar and Hunt, 2002;

Khodjakov et al., 1999; Rieder and Salmon, 1994). Whereas ex-

perimental evidence supports the idea that polar ejection forces

vary with spindle position and thus could provide a positional cue

(Ault et al., 1991; Cassimeris et al., 1994; Rieder et al., 1986;

Rieder and Salmon, 1994), other data indicate that they are insuf-

ficient to explain congression (Kapoor and Compton, 2002). For

example, abrogation of the polar ejection force via inhibition of

chromokinesins does not abolish congression (Levesque and

Compton, 2001). Furthermore, experimental removal of chromo-

some arms does not prevent kinetochores from aligning at the

spindle equator (Brinkley et al., 1988). Taken together, these

studies suggest that another mechanism, likely acting at kineto-

chores, provides spatial cues that are critical for alignment.

An alternative mechanism for congression revolves around an

intriguing idea that kinetochores are ‘‘smart’’ and can sense their

position within the spindle (Mitchison, 1989). In ‘‘smart’’ kineto-

chore models, the position-sensitive mechanism that deter-

mines when chromosomes change direction acts at kineto-

chores (Kapoor and Compton, 2002; Rieder and Salmon,

1994). Although molecular evidence to support a mechanism

that would permit kinetochores to monitor their spindle position

is lacking, the motor proteins of the kinesin-8 subfamily have the

potential to fulfill such a role. In vitro studies have established

that kinesin-8s are plus-end-directed motors that can depoly-

merize stable MTs specifically at their plus-ends in a length-

dependent manner, suggesting a role in directly regulating MT

dynamics and MT length in vivo (Gupta et al., 2006; Mayr et al.,

2007; Pereira et al., 1997; Varga et al., 2006). Furthermore, ge-

netic and siRNA-based studies indicate that kinesin-8 motors,

including human Kif18A, are required for proper mitotic chromo-

some alignment (Gandhi et al., 2004; Garcia et al., 2002; Gosh-

ima and Vale, 2003; Mayr et al., 2007; West et al., 2002; Zhu

et al., 2005). However, the question of how kinesin-8 motors

functionally contribute to congression remains unanswered.

To investigate the mechanism by which Kif18A regulates chro-

mosome congression, we have used high-resolution live cell im-

aging combined with quantitative measurements of kinetochore

movements. We report that Kif18A controls the persistent move-

ment of chromosomes by both increasing the rate at which they

make directional switches and slowing the velocity of their move-

ment. Furthermore, Kif18A’s accumulation on kMTs and its

ability to suppress oscillatory movements are dependent on its

motor activity and vary within the spindle. Based on these
Inc.
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discoveries, we propose a model for chromosome congression

in which Kif18A forms a gradient along kMTs that directly regu-

lates their length and dynamics to facilitate chromosome align-

ment at the spindle equator.

RESULTS

Kif18A Forms a Motor-Dependent Gradient
at kMT Plus-Ends
Endogenous Kif18A exhibits a dynamic localization to the plus-

ends of kMTs (Figures 1A and 1B; see Figure S1 in the Supple-

mental Data available with this article online). The localization

of Kif18A in mitotic HeLa cells was analyzed with anti-Kif18A an-

tibodies and by expression of EGFP-Kif18A. Similar localization

was observed with both approaches. In prometaphase cells, the

motor is found along spindle MTs and localizes near the outer-ki-

netochore marker Hec1 at only a subset of kinetochores (Figures

1A–1D). In metaphase cells with aligned chromosomes, Kif18A

localizes as a comet-like gradient along most if not all kMTs,

and this localization requires Kif18A’s motor activity (Figures

1A–1H; Figure S1). A mutant form of Kif18A (EGFP-Kif18A-

mut), containing alanine substitutions in three conserved motor

domain residues required for kinesin motility and kinesin-13 de-

polymerization (Moore et al., 2005; Woehlke et al., 1997), uni-

formly binds to spindle MTs and does not exhibit a gradient-

like localization pattern (Figures 1E–1H). During anaphase,

Kif18A is still seen at kinetochores and additionally begins to ac-

cumulate in the spindle midzone (Figure 1A; Figure S1). Kif18A

concentrates at the midbody during telophase and cytokinesis

(Figure S1).

Several additional features of Kif18A localization in metaphase

cells were also observed. Analyses of metaphase sister kineto-

chore pairs coimmunostained with Hec1 and Kif18A antibodies

revealed that the peak of Kif18A fluorescence is just distal to

the peak of Hec1 fluorescence (Figure 1C), consistent with local-

ization of Kif18A at kMT plus-ends. However, unlike Hec1 fluo-

rescence, which is equal on both sister kinetochores, the peak

intensity of Kif18A is significantly greater on one sister kineto-

chore relative to the other (Figures 1C and 1D). Analysis of optical

sections through metaphase spindles revealed that the concen-

tration of Kif18A, but not EGFP-Kif18A-mut, is greater on kMTs

at the periphery of the spindle compared to those at the spindle

interior closer to the pole-to-pole axis. Thus, the accumulation of

Kif18A on kMT plus-ends varies within the spindle, and this dif-

ferential accumulation is motor dependent (Figures 1E and 1F).

Consistent with previous studies (Mayr et al., 2007), we found

that Kif18A’s localization to kinetochores was also dependent

on MTs, as Kif18A was not detected at kinetochores after depo-

lymerization of MTs with nocodazole or vinblastine (Figure S2).

Taken together, these data suggest Kif18A utilizes its plus-

end-directed motility to form a gradient along kMTs during meta-

phase and that accumulation is greater at the outer periphery of

the spindle.

Kinetochore Oscillations Are Sensitive to Alterations in
Kif18A Expression
To address Kif18A’s role during chromosome congression, cells

were either depleted of Kif18A by siRNA treatment or transfected

with EGFP-Kif18A to increase Kif18A expression. Treatment with
Devel
Kif18A-specific siRNAs resulted in the depletion of Kif18A from

mitotic spindles and kinetochores (Figure S3). The amount of

Kif18A that remained after siRNA depletion was below the level

of detection for our antibody (>90% depletion; Figure S3C). Con-

sistent with previous reports (Mayr et al., 2007; Zhu et al., 2005),

we observed that depletion of Kif18A resulted in failed chromo-

some alignment (Figures S3A and S3B) and an increase in prom-

etaphase cells (Figure S3D). In contrast, expression of EGFP-

Kif18A did not cause a mitotic delay or disrupt chromosome

alignment (Figure S3D).

To address a role for Kif18A in regulating mitotic chromosome

movements, HeLa cells coexpressing fluorescent kinetochore

and centrosome markers were analyzed by time-lapse micros-

copy following transfection with siRNAs or EGFP-Kif18A. We

observed that chromosomes in these cells were bioriented

and made oscillatory movements around the equator of the

spindle reminiscent of those observed in late prometaphase

and metaphase control cells (Figures 2A–2C; Movies S1–S3). Bi-

oriented kinetochores in these cells were also under tension, as

determined by measuring the distance between sister kineto-

chores over time. Whereas distributions of interkinetochore

distance were similar in all cell types tested, alterations in

Kif18A levels correlated with small but significant changes in

the average interkinetochore distance (Figure 2D). Kif18A deple-

tion reduced the average interkinetochore distance, consistent

with previous measurements in fixed cells (Mayr et al., 2007;

Zhu et al., 2005), whereas EGFP-Kif18A expression led to

greater interkinetochore distance. However, the most striking

effects induced by altering Kif18A expression were changes in

oscillation amplitude. Oscillatory movements were dramatically

increased in the absence of Kif18A and were suppressed in

EGFP-Kif18A cells. These effects are evident in plots of individ-

ual kinetochore movements relative to spindle poles (Figure 2A)

and in kymographs generated from CENP-B fluorescence

(Figure 2C).

In order to quantify changes in oscillatory movement in a pop-

ulation of kinetochores, we developed a measurement that

scores the deviation from the average position (DAP) for individ-

ually tracked bioriented kinetochores. The DAP for a kinetochore

is a linear measure of oscillation amplitude that provides a means

to quantitatively analyze kinetochore movements even when un-

ambiguous determination of directional changes is difficult, such

as in the suppressed oscillations observed in EGFP-Kif18A cells

(for more information, see Figure S4). These studies revealed

that depletion of Kif18A significantly increased the DAP from

0.46 ± 0.02 mm to 0.85 ± 0.03 mm, whereas overexpression of

Kif18A significantly reduced the DAP to 0.31 ± 0.01 mm

(Figure 2E; Table 1). Therefore, the distance that kinetochores

move from their average position during oscillations is increased

approximately 2-fold in the absence of Kif18A and is reduced by

approximately 30% in the presence of EGFP-Kif18A. Further-

more, the suppression of oscillatory movements is dependent

on Kif18A’s motor activity, as expression of EGFP-Kif18A-mut

did not affect oscillations (Figures 2A–2C and 2E). These data

indicate that Kif18A limits persistent movement of bioriented

kinetochores in a motor-dependent fashion and that increased

oscillation amplitude is likely the primary defect that leads to

the unaligned chromosome phenotype seen in Kif18A-depleted

cells.
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Figure 1. Kif18A Displays Dynamic, Motor-Dependent Localization to the Plus-Ends of Kinetochore Microtubules

(A) Mitotic HeLa cells in the indicated stages were fixed and stained with anti-Kif18A antibodies (green in overlay) and anti-Hec1 antibodies (red in overlay). Scale

bar represents 5 mm.

(B) Magnified views of the regions indicated by white boxes in prometaphase (promet), metaphase (meta), and anaphase (ana) cells in (A). Scale bar represents

2 mm.
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Developmental Cell

Kif18A Suppresses Kinetochore Movements
In addition to suppressing oscillations, we observed that

EGFP-Kif18A expression often led to uncoordinated sister kinet-

ochore movements. Specifically, one kinetochore frequently

attempted to move poleward while its sister remained stationary

or also attempted poleward movement (see Movie S3). The tran-

sient increases in interkinetochore distance caused by these

events are evident in our distribution of measurements as

a shoulder above 1 mm and might explain the increase in average

interkinetochore distance induced specifically by EGFP-Kif18A

but not EGFP-Kif18A-mut expression (Figure 2D).

Oscillation Amplitude Correlates with Kif18A
Accumulation at Kinetochores
Because the concentration of Kif18A is higher on kMTs at the pe-

riphery of the spindle compared to those nearer to the pole-to-

pole axis (Figure 1E), we compared oscillatory movements of ki-

netochores based on their location within the spindle. In control

siRNA-treated cells, we found that oscillations of peripheral

kinetochores were significantly reduced compared to those of

kinetochores closer to the long axis of the spindle (Figure 2F),

consistent with previous studies in PtK1 cells (Canman et al.,

2002; Cimini et al., 2004). Depletion of Kif18A significantly in-

creased the movements of peripheral and internal kinetochores,

suggesting that Kif18A limits oscillatory movements of all kinet-

ochores (Figure 2F). Interestingly, we also found that oscillations

of peripheral and internal kinetochores were not significantly dif-

ferent in EGFP-Kif18A cells and that oscillations in these cells are

comparable to those of peripheral kinetochores in control cells

(Figure 2F). These data show that oscillation amplitude is in-

versely correlated with the concentration of Kif18A on kMTs.

The Effects of Kif18A on Chromosome Oscillations
Are Not a Result of Changes in Spindle Length
Consistent with studies in fixed cells (Mayr et al., 2007), we found

that spindles in live cells depleted of Kif18A are longer on aver-

age than control spindles (Figures 3A and 3B). Polar ejection

forces generated by each half-spindle are believed to play a sig-

nificant role in the regulation of chromosome oscillations during

mitosis by generating away-from-pole forces along chromo-

some arms, which increase as chromosomes enter MT-dense

regions near centrosomes (Cassimeris et al., 1994; Rieder

et al., 1986; Rieder and Salmon, 1994). In principle, an increase

in spindle length could indirectly lead to larger chromosome os-

cillations by positioning areas of MT density farther from the

spindle equator. However, analysis of kinetochore oscillations

as a function of spindle length does not support this hypothesis

(Figure 3C). Within a cell population there is little correlation be-

tween spindle length and oscillation amplitude. Furthermore,

when oscillatory movements in control and Kif18A-depleted

cells with spindles of similar length are compared (between 15
Deve
and 17 mm), oscillations are larger in the absence of Kif18A

(Figure 3C). These data indicate that the effects of Kif18A on

chromosome oscillations are not simply an indirect effect of

changes in spindle length and suggest a direct role for Kif18A

in controlling chromosome movements.

Kif18A Affects the Velocity and Switch Rate
of Kinetochore Movements
Oscillation amplitude could be affected by alterations in two in-

dependent characteristics of chromosome movement: velocity

and the frequency of directional switches. To calculate the

switch rate for a kinetochore, we counted the number of times

it changed directions during oscillatory movement and divided

that number by the amount of time the kinetochore was filmed.

On average, the kinetochore switch rate is reduced in cells

depleted of Kif18A compared to controls (Figure 4A; Table 1).

Kinetochores in control-depleted cells changed direction at an

average rate of 1.58 ± 0.05 min�1, whereas those in Kif18A-

depleted cells switched direction at an average rate of 1.23 ±

0.11 min�1. These data suggest that kinetochores in Kif18A-

depleted cells undergo longer periods of persistent movement

between turnarounds.

The velocity of oscillatory movements was also significantly in-

creased in Kif18A-depleted cells relative to controls (Figure 4B;

Table 1). Kinetochores in control-depleted cells moved at an

average rate of 1.92 ± 0.06 mm/min, whereas those in Kif18A-de-

pleted cells oscillated at an average rate of 2.80 ± 0.08 mm/min.

Furthermore, poleward and away-from-pole movements were

equally affected (Figure 4B; Table 1). The increase in velocity in

the absence of Kif18A is surprising, because it implies that

Kif18A, an MT depolymerizer, acts to slow chromosome move-

ment in vivo. In contrast to our findings, another study reported

that Kif18A depletion reduces the velocity of kinetochore move-

ments (Mayr et al., 2007). The exact reason for these conflicting

results is not clear, but we feel that the differences might be a re-

sult of the use of low time resolution in the previous study, which

would prevent accurate determination of directional chromo-

some speeds (see Experimental Procedures).

Our data indicate that both an increase in velocity and a de-

crease in directional switch frequency lead to a 2-fold increase

in oscillation amplitude from 1.21 ± 0.08 mm to 2.28 ± 0.15 mm

in Kif18A-depleted cells, consistent with the observed 2-fold

change in DAP (Table 1). Thus, a combination of changes in

switch rate and velocity quantitatively explains the increased

movements observed in Kif18A-depleted cells.

Kif18A Affects the Velocity of Poleward Anaphase
Movements
Because Kif18A is also present on kinetochores in anaphase

cells (Figure 1A), we tested whether Kif18A affects the velocity
(C) Representative linescan across metaphase sister kinetochores in a HeLa cell stained with anti-Kif18A (green) and anti-Hec1 (red) antibodies. In all scans, the

peak of Kif18A fluorescence was distal to the peak of Hec1 fluorescence with respect to the centromere (n = 19 kinetochore pairs from three cells).

(D) The ratio of peak fluorescence intensity on sister kinetochores was calculated from metaphase cells costained for Hec1 and Kif18A by immunofluorescence.

The peak intensity of Hec1 is equal between sister kinetochores, whereas Kif18A is significantly higher on one sister kinetochore than the other (n = 19 kinetochore

pairs from three cells; p = 0.001). Error bars indicate SEM.

(E and F) Metaphase HeLa cells expressing either EGFP-Kif18A (E) or EGFP-Kif18A mutant (F) (green in overlay) and stained with human CREST serum to visualize

kinetochores (red in overlay). Optical slices from the periphery and the center of each spindle are displayed. Scale bars represent 5 mm.

(G and H) Magnified images of EGFP-Kif18A (G) or EGFP-Kif18A-mut (H) along kMTs. Scale bars represent 1 mm.
lopmental Cell 14, 252–262, February 2008 ª2008 Elsevier Inc. 255
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Figure 2. Kif18A Affects the Oscillatory Movements of Kinetochores

(A) Distance versus time plots of two kinetochore pairs (red and blue lines) from each of the indicated cell types. Relative distance was calculated by measuring

the separation between each kinetochore and one spindle pole. Images were collected every 5 s for control and Kif18A siRNA cells and every 2 s for EGFP-Kif18A

and EGFP-Kif18A-mut cells.

(B) Still frames of CENP-B fluorescence in cells used to derive the distance versus time plots shown in (A). Arrows indicate position of pole used for relative dis-

tance measurements. Red and blue dots are overlayed on kinetochores that were tracked to generate the red and blue traces in (A), respectively. Two-color

images of EGFP-Kif18A or EGFP-Kif18A-mut (green) with mRFP-CENP-B (red) were taken immediately after time-lapse imaging of kinetochore movements

was stopped. Scale bar represents 5 mm.

(C) Representative kymographs of CENP-B fluorescence from cells transfected with control siRNAs, Kif18A-specific siRNAs, or EGFP-Kif18A. Vertical scale bars

represent 2 min; horizontal scale bars represent 5 mm.

(D) Histograms displaying average interkinetochore distances for sister kinetochore pairs in live cells. The mean ± SEM is indicated for each distribution and the

mean position is marked by a vertical dotted line. ‘‘n’’ indicates the number of kinetochore pairs tracked from ten (control and Kif18A siRNA), seven (EGFP-

Kif18A), or four (EGFP-Kif18A-mut) cells. The average interkinetochore distances measured from Kif18A siRNA and EGFP-Kif18A-expressing cells are signifi-

cantly different from those measured in control siRNA-treated cells (p = 1.0 3 10�4 and p = 0.02, respectively). Average interkinetochore distances for EGFP-

Kif18A-expressing cells are also significantly different from EGFP-Kif18A-mut-expressing cells (p = 0.02).

(E) Histograms displaying deviation from average position (DAP) calculations for the indicated cell types. The mean ± SEM is given for each distribution and the

mean position is marked by a vertical dotted line. ‘‘n’’ indicates the number of kinetochores analyzed from the same data set used in (D). The DAPs for
256 Developmental Cell 14, 252–262, February 2008 ª2008 Elsevier Inc.



Developmental Cell

Kif18A Suppresses Kinetochore Movements
Table 1. Measurements of Preanaphase Kinetochore Movements

P Vel (mm min�1) AP Vel (mm min�1) Switch (min�1) Amp (mm) DAP (mm) IKD (mm)

Control siRNA 1.99 ± 0.07 1.81 ± 0.07 1.58 ± 0.05 1.21 ± 0.08 0.46 ± 0.02 0.78 ± 0.02

Kif18A siRNA 2.97 ± 0.09** 2.67 ± 0.08** 1.23 ± 0.11** 2.28 ± 0.15** 0.85 ± 0.03** 0.69 ± 0.02**

EGFP-Kif18A ND ND ND ND 0.31 ± 0.01** 0.89 ± 0.04*

EGFP-Kif18A-mut ND ND ND ND 0.48 ± 0.05 0.75 ± 0.04

Average measurements of poleward velocity (P Vel), away-from-pole velocity (AP vel), switch rate (Switch), oscillation amplitude (Amp), deviation from

average position (DAP), and interkinetochore distance (IKD) are given ± SEM. *p % 0.05 and **p % 0.01 compared to controls. ND, not determined.
of poleward chromosome movements during anaphase. Deple-

tion of Kif18A results in a mitotic delay mediated by the spindle

assembly checkpoint, and very few Kif18A-depleted cells go

through anaphase (Mayr et al., 2007; Zhu et al., 2005)

(Figure S3D). Kif18A-depleted cells, however, are able to prog-

ress through anaphase, and exit mitosis when the checkpoint

protein Mad2 is simultaneously depleted (Mayr et al., 2007)

(Figure S3D). Therefore, we analyzed anaphase kinetochore

movements in cells codepleted of Mad2 and Kif18A. Consistent

with previous studies, Mad2-depleted cells entered anaphase

before completing congression (Canman et al., 2002; Meraldi

et al., 2004). Although most kinetochores segregated to the spin-

dle poles normally, lagging chromosomes were frequently seen

in cells depleted of Mad2 alone or codepleted of Mad2 and

Kif18A (Figure 5A; see Movies S4 and S5). Anaphase A rates

for nonlagging chromosomes increased approximately 20%

from 1.68 ± 0.08 mm/min to 2.12 ± 0.14 mm/min in the absence

of Kif18A (Figure 5B). However, we observed that loss of

Kif18A function did not affect all kinetochores equally under

these conditions and that only a subset of kinetochores in

Mad2/Kif18A-depleted cells moved faster than controls. This

could be a result of the increased frequency of merotelic attach-

ments seen when cells are induced to enter anaphase preco-

ciously (Cimini et al., 2003).

To further investigate Kif18A’s effects on anaphase kineto-

chore movements, we analyzed the small fraction of Kif18A

siRNA-treated cells that happened to enter anaphase without

checkpoint knockdown. For these studies, we chose cells with

large preanaphase oscillations that initiated chromosome segre-

gation without completing alignment, which are indications of

Kif18A depletion. The average kinetochore poleward velocity in

these cells was increased by approximately 40% to 2.83 ±

0.15 mm/min and, importantly, the majority of kinetochores dis-

played increased speed relative to controls (Figure 5B; Movies

S6 and S7). In contrast, expression of EGFP-Kif18A slowed ana-

phase A velocity by approximately 45% to 0.92 ± 0.04 mm/min

(Figure 5B; Movie S8). Taken together, these results suggest

that Kif18A acts as a governor to limit the rate of kinetochore

movements during mitosis, a function that is quite unexpected

considering its MT depolymerization activity in vitro (Mayr

et al., 2007).
Devel
DISCUSSION

Metaphase chromosomes in vertebrate cells make oscillatory

movements around the spindle equator, and the regulation of

these movements is believed to be important for establishing

and maintaining alignment (Kapoor and Compton, 2002; Rieder

and Salmon, 1994; Skibbens et al., 1993). Our data indicate that

Kif18A functions to limit these oscillatory movements and control

chromosome alignment.

We show that during mitosis, Kif18A suppresses the amplitude

of kinetochore oscillations in part by increasing the rate at which

kinetochores change directions. Kinetochore movements in ver-

tebrate cells are thought to depend primarily on kMT plus-end

dynamics (Inoue and Salmon, 1995; Rieder and Salmon, 1994).

Kif18A’s localization to kMT plus-ends and its in vitro MT depo-

lymerizing activity suggest that it might directly modulate chro-

mosome movements (Mayr et al., 2007). Directional switching

involves both catastrophe and rescue of kMT plus-ends. Inter-

estingly, Kip3p increases both the rescue and catastrophe fre-

quencies of MTs in budding yeast (Gupta et al., 2006). A similar

effect during mitosis would increase the frequency and suppress

the amplitude of kinetochore oscillations, as we observed.

Kif18A-mediated changes in kinetochore oscillation amplitude

were also due in part to a surprising and counterintuitive effect on

the velocity of chromosome movements. In the absence of

Kif18A, kinetochore velocity was increased during preanaphase

oscillations and anaphase. Conversely, overexpression of

Kif18A slowed poleward anaphase movements. These data indi-

cate that Kif18A functions to slow kinetochore velocity and, im-

portantly, argue against the previously suggested idea that

Kif18A produces the force that drives chromosome movements

(Mayr et al., 2007).

Exactly how Kif18A affects kinetochore velocity is an interest-

ing question that warrants further investigation. One possible ex-

planation for the observed effects on kinetochore velocity is sug-

gested by recent studies of the Drosophila kinesin-8 motor

Klp67A (Buster et al., 2007). In the absence of Klp67A, the rate

of kMT flux, and thus the rate of kMT minus-end shortening, is

increased, which leads to faster anaphase poleward movement.

However, it is unclear whether changes in flux rate can fully ex-

plain the dramatic effects of altering Kif18A expression in human
kinetochores in Kif18A-depleted cells and EGFP-Kif18A cells are significantly different from the DAP for kinetochores in control siRNA cells (p = 4.4 3 10�22 and

1.2 3 10�9, respectively). The DAP for EGFP-Kif18A kinetochores is also significantly different from the DAP for EGFP-Kif18A-mut kinetochores (p = 0.002).

(F) Average DAP measurements for kinetochores on the periphery of the spindle (peripheral) and along the pole-to-pole axis (internal) from cells treated with

control or Kif18A siRNAs or overexpressing EGFP-Kif18A. Error bars are SEM. ‘‘n’’ indicates the number of kinetochores from the data set used in (E). DAPs

for peripheral and internal kinetochores are significantly different in control- and Kif18A-depleted cells (p = 5.9 3 10�7 and p = 7.0 3 10�4, respectively) but

not in EGFP-Kif18A cells (p = 0.75).
opmental Cell 14, 252–262, February 2008 ª2008 Elsevier Inc. 257
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Figure 3. Kif18A’s Effects on Oscillations

Are Not an Indirect Effect of Changes in

Spindle Length

(A) Images of live HeLa cells expressing Venus-

centrin and EGFP-CENP-B (control and Kif18A

siRNA) or EGFP-Kif18A. Spindle lengths were

determined by measuring the distance between

Venus-centrin foci (arrows) or EGFP-Kif18A spin-

dle pole labeling (arrowheads). Scale bar repre-

sents 5 mm.

(B) Histograms of spindle lengths measured in live

cells. The mean ± SEM is given for each distribu-

tion and the mean position is marked by a vertical

dotted line. ‘‘n’’ indicates the number of cells ana-

lyzed. Spindle lengths in Kif18A-depleted and

EGFP-Kif18A-expressing cells are significantly

different from those in control-depleted cells

(p = 4.4 3 10�7 and p = 0.002, respectively).

(C) Scatter plot of deviation from average position

(DAP) measurements as a function of spindle

length. Black circles, control siRNA; red triangles,

Kif18A siRNA; green squares, EGFP-Kif18A. Lines

represent regression fits to each data set.
cells, where flux makes only a minor contribution to the move-

ment and alignment of chromosomes (Ganem and Compton,

2006). For example, flux in human cells accounts for 20% of

chromosome poleward velocity (Ganem et al., 2005), so even if

Kif18A overexpression completely suppressed flux, it would

not be enough to explain the 45% decrease in velocity that we

observed. Alternatively, Kif18A’s accumulation at the plus-

ends of kMTs might affect the kinetics of tubulin addition and re-

lease. The measured effects of kinesin-8 motors on MT dynam-

ics and chromosome movements in yeast, where MTs do not

flux, support this hypothesis (Garcia et al., 2002; Gupta et al.,

2006; Maddox et al., 2000; Mallavarapu et al., 1999; Pearson

et al., 2003; West et al., 2002). Thus, based on current data,

we favor a model in which Kif18A affects kinetochore velocity

through regulation of kMT plus-end dynamics, although effects

on minus-end dynamics cannot be ruled out. Future work aimed

at determining whether and how kinesin-8 motors directly mod-

ulate MT dynamics should help resolve this question.

Our studies also reveal that Kif18A forms a gradient on kMTs

that is dependent on its motor activity, suggesting that Kif18A’s

plus-end-directed motility is required for the concentration of the

motor at the plus-ends of kMTs. Interestingly, the extent of Ki-

f18A’s accumulation at kMT plus-ends varies within the spindle,

as it is more concentrated on kMTs at the spindle periphery. The

absolute concentration of motor could be influenced by a variety

of factors such as length, stability, or numbers of MTs within the

kinetochore fiber. Interestingly, studies of purified Kip3p reveal

that its rate of in vitro depolymerization is proportional to MT

length, which is correlated with the accumulation of a higher con-

centration of the motor at the plus-ends (Varga et al., 2006). This

leads us to propose a model wherein Kif18A utilizes a combina-

tion of length-dependent plus-end accumulation and concentra-

tion-dependent modulation of kMT plus-end dynamics to control

mitotic chromosome positioning. In our model, Kif18A protein
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will accumulate at the plus-end of a kMT as it lengthens beyond

the midzone (the center of the graph in Figure 6), and will disso-

ciate as the kMT shortens. Our observation that the concentra-

tion of Kif18A is higher on one sister kinetochore than the other

is consistent with this idea. As Kif18A accumulates at the plus-

end, it increases to a threshold beyond which the probability

that a kMT will undergo catastrophe is high, and in turn increases

the chance that a chromosome will switch from away-from-pole

to poleward movement. Such a mechanism would limit persistent

movement and restrict oscillations of bioriented chromosomes to

a region around the spindle equator where kMTs connected to

opposite spindle poles are of relatively equal length (Figure 6).

This model, in which Kif18A regulates kMT plus-ends in a con-

centration-dependent manner, is consistent with our analyses of

kinetochore movements. We observed that increasing the con-

centration of Kif18A in the cell leads to both an increase in the ac-

cumulation of Kif18A at kMT plus-ends and a reduction in oscil-

lation amplitude (Figure 6). In this situation, kinetochores have

relatively high levels of Kif18A the majority of the time, and

thus kMTs might be strongly biased toward shortening. This, in

turn, could cause sister kinetochores on bioriented chromo-

somes to initiate poleward movement simultaneously, reducing

coordinated sister chromosome movement and transiently

increasing interkinetochore distance as we observed when

Kif18A was overexpressed. In contrast, decreasing Kif18A leads

to larger kinetochore oscillations, perhaps by preventing thresh-

old accumulation of Kif18A at kMT plus-ends (Figure 6). Quanti-

tatively, however, oscillation amplitude does not seem to be

solely dependent on Kif18A concentration because near-com-

plete depletion of the protein does not completely randomize

chromosome distribution (e.g., >90% depletion only increases

oscillation amplitude 2-fold). Therefore, other cues, such as po-

lar ejection forces or tension-dependent mechanisms, might be

acting in parallel.
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Figure 4. Kif18A Regulates Both the Directional Switch Rate and Velocity of Kinetochore Oscillations

(A) Histograms showing the distribution of kinetochore directional switch rates measured in control and Kif18A siRNA cells. The mean ± SEM is given for each

distribution and the mean position is marked by a vertical dotted line. An average switch rate was calculated for each kinetochore and ‘‘n’’ indicates the number of

kinetochores analyzed from ten control and ten Kif18A siRNA cells. The two data sets are significantly different (p = 2.8 3 10�5).

(B) Histograms of average kinetochore velocities during oscillatory movements in control- and Kif18A siRNA-treated cells. The oscillation velocity distribution

displays the average velocity for each kinetochore analyzed. Poleward velocity and away-from-pole velocity distributions include only velocities from movements

made toward or away from the pole that the kinetochore was attached to, respectively. The mean ± SEM is given for each distribution and the mean position is

marked by a vertical dotted line. ‘‘n’’ indicates the number of kinetochores analyzed from five control and five Kif18A siRNA cells. Kinetochore velocities in Kif18A-

depleted cells are significantly different from those in control-depleted cells (p = 2.8 3 10�15 for average oscillation velocity; p = 5.4 3 10�13 for poleward velocity;

p = 4.2 3 10�12 for away-from-pole velocity).
The correlation between Kif18A’s localization and kinetochore

oscillations in control cells is also consistent with this model.

Kif18A accumulates to a greater extent on the kMTs at the pe-

riphery of the spindle, and the oscillations of peripheral kineto-

chores are reduced compared to those attached to kMTs along

the pole-to-pole axis. This phenomenon is not specific to HeLa

cells, as similar variations in kinetochore movements have

been observed in PtK1 cells (Canman et al., 2002; Cimini et al.,

2004). Interestingly, increasing the concentration of Kif18A in

the cell suppresses all kinetochore movements to the level

seen at the spindle periphery in control cells. The fact that in-

creased Kif18A does not further limit peripheral chromosome

movements suggests that endogenous Kif18A already sup-

presses chromosome movements maximally at the spindle

periphery in control cells.

In conclusion, our data suggest a model in which length-de-

pendent modulation of kMT dynamics by Kif18A provides a spa-

tial cue to control chromosome oscillations and thereby facilitate

accurate organization and segregation of chromosomes during

cell division.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfections

HeLa cells were cultured as previously described (Maney et al., 1998). HeLa

cells were transfected with plasmid DNA by electroporation using Nucleofec-
Devel
tor II (Amaxa) according to the manufacturer’s instructions. Cells were trans-

fected with siRNA using oligofectamine transfection reagent (Invitrogen) ac-

cording to the manufacturer’s instructions. For Kif18A depletion, cells were

transfected with 60 nM each siRNAs targeting the Kif18A sequences

50-GCCAAUUCUUCGUAGUUUU-30 and 50-GCAGCUGGAUUUCAUAAA-30

(Ambion). Treatment with this combination of siRNAs or with either siRNA alone

at 120 nM produced indistinguishable effects. For Mad2 depletion, cells were

transfected with 60 nM each siRNAs targeting the sequences 50-GGAUGAC

AUGAGGAAAAUA-30 and 50-GCGUGGCAUAUAUCCAUCU-30 (Ambion).

For control depletions, cells were transfected with 120 nM (for Kif18A

single-knockdown experiments) or 240 nM (for Kif18A/Mad2 double-knock-

down experiments) negative control siRNA 1 (Ambion). Control siRNA treat-

ment did not alter chromosome alignment or kinetochore movements relative

to untreated control cells (data not shown).

Construction of DNA Plasmids

EGFP-CENP-B (pGFPCPB1) was constructed by PCR amplification of codons

1–167 of the Cricetulus griseus CENP-B gene (a kind gift from Manuel Valdivia,

University of Cadiz, Spain) and subcloning into the EcoRI and XbaI sites of

pEGFP-C1 (Clontech). To prepare mRFP-CENP-B (pMX234), the EGFP

gene of pEGFP-N1 (Clontech) was replaced by PCR-amplified mRFP1.0

(Campbell et al., 2002) and codons 1–167 of CENP-B to generate an EcoRI-

NotI fragment bearing the mRFP-CENP-B fusion. EGFP-Kif18A was con-

structed by PCR amplification of codons 1–898 of the human Kif18A gene

and subcloning into the EcoRI and Not1 sites of pEGFP-C1 (Clontech). Site-

directed mutagenesis was used to change H304, R308, and K311 to alanine

in the EGFP-Kif18A mutant. Venus-centrin was a kind gift from Benjamin Major

and Randall Moon.
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Figure 5. Kif18A Affects Poleward Movement during Anaphase

(A) Selected images from time-lapse analyses of Mad2-depleted and Kif18A/Mad2-codepleted HeLa cells expressing EGFP-CENP-B and Venus-centrin. Time is

given in seconds relative to anaphase sister kinetochore separation. Arrows mark the position of Venus-centrin-labeled spindle poles. In both cells, the lower

spindle pole is out of focus at the time of anaphase. Kinetochores on lagging chromosomes are marked by arrowheads. Cells were filmed at 5 s intervals. Scale

bar represents 5 mm.

(B) Histograms of anaphase A velocities measured in control siRNA, Mad2 siRNA, Kif18A/Mad2 siRNA, Kif18A siRNA, and EGFP-Kif18A cells. The mean ± SEM is

given for each distribution and the mean position is marked by a vertical dotted line. ‘‘n’’ indicates the number of kinetochores analyzed from three cells (Kif18A

siRNA, Mad2 siRNA, and Kif18A/Mad2 siRNA) or four cells (control siRNA and EGFP-Kif18A). The average anaphase A velocities in Kif18A-depleted, Kif18A/

Mad2-codepleted, and EGFP-Kif18A-expressing cells are significantly different from anaphase A velocities in control cells (p = 4.9 3 10�9, p = 4.0 3 10�3,

and p = 4.4 3 10�16, respectively). Anaphase A velocities in Mad2-depleted and Kif18A/Mad2-codepleted cells are also significantly different (p = 0.01).
Immunofluorescence, Deconvolution, and Linear Protein Mapping

HeLa cells were fixed as previously described (Maney et al., 1998). For drug

treatments, cells were treated with 20 mM nocodazole (Sigma), 10 mM vinblas-

tine (Sigma), or an equal volume of DMSO (Sigma) for 30 min prior to fixation.

Antibodies against the C terminus of Kif18A were raised in rabbits against
260 Developmental Cell 14, 252–262, February 2008 ª2008 Elsevier
a GST-tagged polypeptide containing amino acids 593–898 of Kif18A and

then affinity purified. Cells were labeled with the following primary antibodies:

mouse-anti-Hec1 (1:500; Abcam), rabbit-anti-Kif18A (1:50), mouse-anti-a-tu-

bulin (1:50; Sigma), or human-CREST serum (1:50; a kind gift from Bill Brinkley)

for 1 hr at room temperature. Anti-mouse, anti-rabbit, and anti-human
Inc.
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secondary antibodies conjugated to fluorescein or rhodamine (Jackson Labo-

ratories) were used at 1:50 for 1 hr at room temperature. Stained cells were

mounted in Vectashield with DAPI (Vector). Cells were imaged on a Nikon up-

right microscope equipped with a CCD camera and a 603 1.4 NA lens (Nikon)

or a Deltavision system equipped with a CCD camera and a 603 1.4 NA lens

(Olympus). Selected images were deconvolved using a Deltavision image-pro-

cessing workstation (Applied Precision). The linescan function in the Softworx

program (Applied Precision) was used to determine the spatial relationships

and peak fluorescent values of Hec1 and Kif18A from immunofluorescent im-

ages.

SDS-PAGE and Western Blot

HeLa cells were lysed in 13 Laemmli sample buffer 24 or 48 hr after addition of

siRNA. Lysates were briefly sonicated, boiled for 10 min, and separated on

4%–12% acrylamide gradient gels by SDS-PAGE. Proteins were transferred

to nitrocellulose membrane and analyzed by western blot with polyclonal

anti-Kif18A antibodies (1:100) and monoclonal anti-GAPDH antibodies

(1:1000; Calbiochem). Proteins were visualized by chemiluminescence, and

GAPDH signals were quantified with the gel analyzer function in ImageJ (NIH).

Live Cell Imaging

HeLa cells were cultured in MEMalpha (Life Technologies) medium with 10%

FBS (Hyclone) at 37�C and 5% CO2 on 35 mm2 glass coverslip dishes coated

with poly-l-lysine (MatTek) for 48 hr after DNA transfection and 24–36 hr after

siRNA transfection before analysis by time-lapse microscopy. Prior to filming,

the cells were switched to 37�C CO2-independent media (Life Technologies).

Cells were imaged with a Deltavision RT system (Applied Precision) equipped

with a CCD camera and a 603 1.42 NA lens (Olympus) and a 37�C environ-

mental chamber (Applied Precision). Z stacks containing five focal planes

with 0.5 mm spacing were acquired at intervals of 2, 5, or 20 s. Some cells

were also imaged using a CARV (BD Biosciences) spinning-disc confocal

system attached to a TE2000 inverted microscope (Nikon) equipped with an

ORCA ER (Hamamatsu) camera and a Plan Apo 603 1.4 NA lens (Nikon).

Figure 6. Model for Kif18A Regulation of Mitotic Chromosome

Movements

The concentration of Kif18A at kinetochores is proportional to kMT length and

stability. Once Kif18A reaches a threshold level (dashed gray line) at kMT plus-

ends, it increases the probability that the kMT will undergo catastrophe and

therefore increases the probability that the kinetochore will change direction.

In a control cell (gray diagonal lines), Kif18A restricts oscillatory movements

to a region near the spindle equator where kMTs emanating from opposite

poles are of relatively equal length (black bracket). Increasing the concentra-

tion of Kif18A in the cell by overexpressing EGFP-Kif18A (green diagonal lines)

increases the accumulation of Kif18A on kMTs and further restricts move-

ments (green bracket). Reducing the concentration of Kif18A by treating cells

with Kif18A-specific siRNAs (red diagonal lines) prevents threshold accumula-

tion of the motor and leads to larger kinetochore oscillations (red bracket).
Deve
CARV images were collected at 5 s intervals using a single focal plane. Cells

were maintained at 37�C with a thermoelectric stage.

Quantification of Kinetochore Movements

Based on the similarities between kinetochore movements in Kif18A-depleted

and EGFP-Kif18A-expressing cells to those of late prometaphase and meta-

phase control cells, kinetochore movements during these stages in controls

were quantified. For all preanaphase measurements, the chosen kinetochores

were bioriented, under tension and moving around the equator of the spindle.

Kinetochore and spindle pole movements were tracked using maximum-inten-

sity projection movies from live cell imaging experiments and the manual

tracking plug-in for ImageJ (NIH). Kinetochore movement parameters, spindle

lengths, and interkinetochore distances were quantified from tracking data us-

ing Igor Pro 6.0 software (Wavemetrics). All velocity measurements were made

by linear regression analysis of kinetochore distance versus time plots. Veloc-

ity measurements during oscillatory movements were only made from cells

filmed at time intervals of 5 or 2 s because kinetochores filmed at 20 s intervals

frequently changed directions between data points, making velocity measure-

ments artifactually low (kinetochores change directions approximately every

40 s in HeLa cells based on our switch rate measurements). Average oscillation

amplitudes were calculated by dividing average velocities by average switch

rates. Statistical comparisons between data sets were performed using two-

tailed t tests assuming unequal variances. In cases where multiple measure-

ments were made from the same kinetochore over time, an average value

was calculated. The reported p values are from comparisons of these kineto-

chore averages, where the number of events is taken as the number of kinet-

ochores analyzed. Indications of significance (p % 0.05) from statistical tests

using average values from each cell analyzed were consistent with those

reported, with the exception of interkinetochore distance changes in Kif18A-

depleted or EGFP-Kif18A cells, which were not significantly different when

compared in this manner.

Supplemental Data

Supplemental Data include four figures and eight movies and are available at

http://www.developmentalcell.com/cgi/content/full/14/2/252/DC1/.
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